Superlattice-based thin-film thermoelectric modules with high cooling fluxes
نویسندگان
چکیده
In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux qmax of only about 10 W cm(-2), while state-of-the art commercial thin-film modules have a qmax <100 W cm(-2). Such flux values are insufficient for thermal management of modern high-power devices. Here we show that cooling fluxes of 258 W cm(-2) can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type δ-doped Bi2Te3-xSex, both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays.
منابع مشابه
A comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe
Most of the conventional thermal management techniques can be used to cool the whole chip. Since thermal design requirements are mostly driven by the peak temperatures, reducing or eliminating hot spots could alleviate the design requirements for the whole package. Monolithic solid-state microcoolers offer an attractive way to eliminate hot spots. In this paper, we review theoretical and experi...
متن کاملMicroscale thermoelectric devices for energy harvesting and thermal management
Superlattice material technologies in the Bi2Te3-material system can potentially enable efficient micro-scale thermoelectric devices for energy harvesting and active site-specific thermal management from ~200K to ~400K. The state-of-the-art in these thin film materials and the state of transition of these materials into device prototypes are presented. In the energy harvesting area, early resul...
متن کامل3d Electrothermal Simulation of Heterostructure Thin Film Micro-coolers
1 Contact author e-mail: [email protected] ABSTRACT A 3D electrothermal model is used to simulate and optimize Si/SiGe superlattice heterostructure micro-coolers. The model considers thermoelectric/thermionic cooling, heat conduction and Joule heating. It also includes non-ideal effects, such as contact resistance between metal and semiconductor, substrate/heatsink thermal resistance, the side c...
متن کاملModeling of Thermoelectric Properties of Semi-Conductor Thin Films With Quantum and Scattering Effects
Several new reduced-scale structures have been proposed to improve thermoelectric properties of materials. In particular, superlattice thin films and wires should decrease the thermal conductivity, due to increased phonon boundary scattering, while increasing the local electron density of states for improved thermopower. The net effect should be increased ZT, the performance metric for thermoel...
متن کاملMODELING AND OPTIMIZATION OF SINGLE-ELEMENT BULK SiGe THIN-FILM COOLERS
Modeling and optimization of bulk SiGe thin-film coolers are described. Thin-film coolers can provide large cooling power densities compared to commercial thermoelectrics. Thin-film SiGe coolers have been demonstrated with maximum cooling of 4◦C at room temperature and with cooling power density exceeding 500 W/cm2. Important parameters in the design of such coolers are investigated theoretical...
متن کامل